

APPROVAL SHEET

RFBLN 2012 (0805) Series - RoHS Compliance

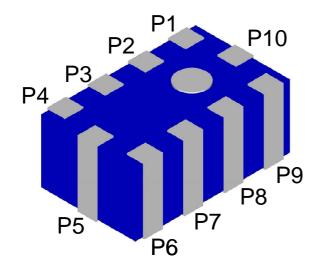
MULTILAYER CERAMIC BALUN TRANSFORMER

Halogens Free Product

GSM 850/ GSM 900/ DCS1800/ PCS1900 Band Working Frequency

P/N: RFBLN2012090BM5T25

*Contents in this sheet are subject to change without prior notice.


FEATURES

- 1. Miniature footprint: 2.0 X 1.2 X 0.9 mm³
- 2. Integrate 2 different working band devices into one package
- 3. Low Insertion Loss
- 4. Low in band Amplitude and Phase imbalance enable high performance wireless system operation
- 5. LTCC process
- 6. Second harmonic suppression
- 7. ISM band suppression

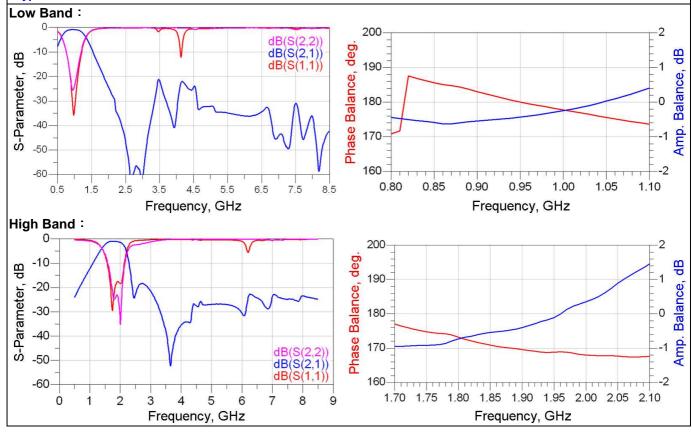
APPLICATIONS

- 1. GSM 850/ GSM 900/ DCS1800/ PCS1900 Band RF application.
- 2. Unbalance to balance conversion.

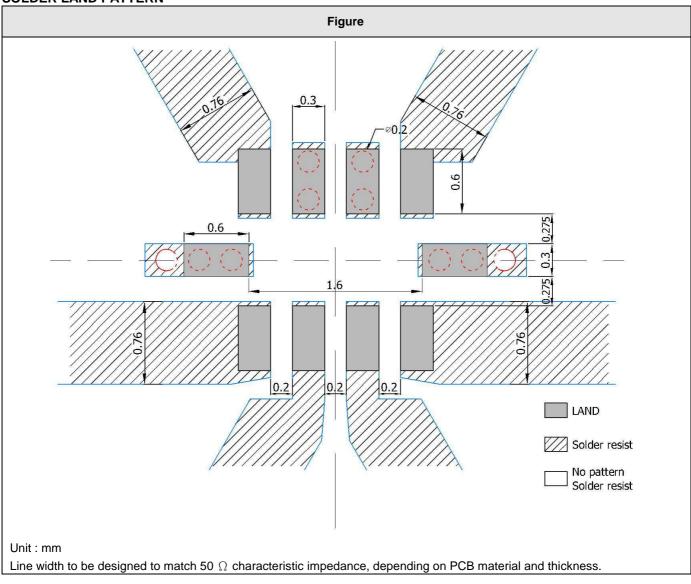
CONSTRUCTION

PIN	Connection	PIN Connection	
P1	Unbalance Port _LB	P6	Balance Port _HB
P2	GND	P7 Balance Port _HE	
P3	GND	P8	Balance Port _LB
P4	Unbalance Port _HB	P9	Balance Port _LB
P5	GND	P10	GND

DIMENSIONS


Figure	Symbol	Dimension (mm)
	L	2.00 ± 0.10
Tama (area and a	W	1.25 ± 0.10
3	Т	0.90 ± 0.10
	А	0.125 ± 0.10
HT	В	0.25 ± 0.10
La contraction of the contractio	С	0.25 ± 0.10
	D	0.50 ± 0.10
A BC D	Е	0.475 ± 0.10
	F	0.30 ± 0.10
	G	0.20 ± 0.10
	Н	0.20 ± 0.10

ELECTRICAL CHARACTERISTICS


RFBLN2012090BM5T25	Specification L-Band	Specification H-Band		
Frequency range (MHz)	869~960	1805~1990		
Insertion Loss (dB)	1.1 max	1.6 max		
VSWR	2 Max	2 Max		
Impedance (Unbalanced)	50 Ω	50 Ω		
Impedance (Balanced)	200 Ω	200 Ω		
Phase Difference	180° ± 10°	180° ± 15°		
Amplitude balance (dB max.)	2 Max	2 Max		
	10 dB @ 1738 ~ 1920MHz	15 dB @ 2400 ~ 2500MHz		
Attenuation (dB min.)	20 dB @ 2400 ~ 2500MHz	20 dB @ 3610 ~ 3980MHz		
	20 dB @ 2607 ~ 2880MHz	20 dB @ 5415 ~ 5970MHz		
Operation Temperature Range	-40°C	-40°C ~ +85°C		

Typical Electrical Chart

SOLDER LAND PATTERN

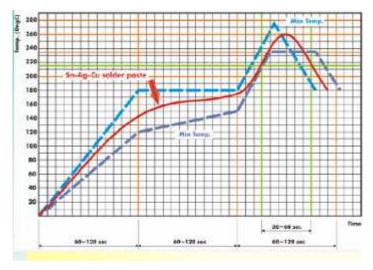
RELIABILITY TEST

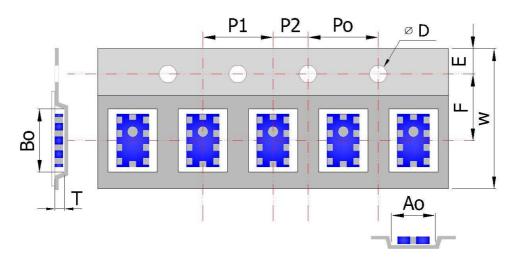
Test item	Test condition / Test method	Specification
Solderability JIS C 0050-4.6	*Solder bath temperature : 235 ± 5°C	At least 95% of a surface of each terminal
JESD22-B102D	*Immersion time : 2 ± 0.5 sec	electrode must be covered by fresh solder.
	*Solder : Sn3Ag0.5Cu for lead-free	
Leaching (Resistance to dissolution of metallization)	*Solder bath temperature : $260 \pm 5^{\circ}\text{C}$ *Leaching immersion time : $30 \pm 0.5 \text{ sec}$	Loss of metallization on the edges of each electrode shall not exceed 25%.
IEC 60068-2-58	*Solder : SN63A	
Resistance to soldering heat JIS C 0050-5.4	*Preheating temperature : 120~150°C,	No mechanical damage.
	1 minute.	Samples shall satisfy electrical specification after test.
	*Solder temperature : 270±5°C *Immersion time : 10±1 sec	Loss of metallization on the edges of each
	*Solder: Sn3Ag0.5Cu for lead-free	electrode shall not exceed 25%.
	Measurement to be made after keeping at room temperature for 24±2 hrs	
Drop Test JIS C 0044	*Height: 75 cm *Test Surface: Rigid surface of concrete or steel. *Times: 6 surfaces for each units; 2 times for each side.	No mechanical damage. Samples shall satisfy electrical specification after test.
Adhesive Strength of Termination JIS C 0051- 7.4.3	*Pressurizing force : 5N(≤0603) ; 10N(>0603) *Test time : 10±1 sec	No remarkable damage or removal of the termination.
Bending test JIS C 0051- 7.4.1	The middle part of substrate shall be pressurized by means of the pressurizing rod at a rate of about 1 mm/s per second until the deflection becomes 1mm/s and then pressure shall be maintained for 5±1	No mechanical damage. Samples shall satisfy electrical specification after test.
	sec. Measurement to be made after keeping at room temperature for 24±2 hours	

Approvai silect		
Temperature cycle JIS C 0025	 30±3 minutes at -40°C±3°C, 10~15 minutes at room temperature, 30±3 minutes at +85°C±3°C, 10~15 minutes at room temperature, Total 100 continuous cycles Measurement to be made after keeping at room temperature for 24±2 hrs 	No mechanical damage. Samples shall satisfy electrical specification after test.
Vibration JIS C 0040	*Frequency: 10Hz~55Hz~10Hz(1min) *Total amplitude: 1.5mm *Test times: 6hrs.(Two hrs each in three mutually perpendicular directions)	No mechanical damage. Samples shall satisfy electrical specification after test.
High temperature JIS C 0021	*Temperature: 85°C±2°C *Test duration: 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Samples shall satisfy electrical specification after test.
Humidity (steady conditions) JIS C 0022	*Humidity: 90% to 95% R.H. *Temperature: 40±2°C *Time: 1000+24/-0 hrs. Measurement to be made after keeping at room temperature for 24±2 hrs % 500hrs measuring the first data then 1000hrs data	No mechanical damage. Samples shall satisfy electrical specification after test.
Low temperature JIS C 0020	*Temperature : -40°C±2°C *Test duration : 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Samples shall satisfy electrical specification after test.

SOLDERING CONDITION

Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 2,



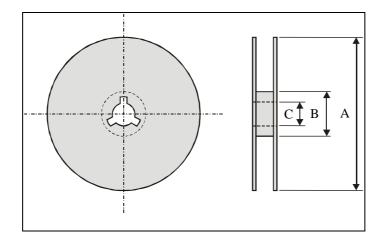

Fig 2. Infrared soldering profile

ORDERING CODE

RF	BLN	201209	0	В	M5T25
Walsin	Product Code	Dimension code	Unit of dimension	Application	Specification
RF device	BLN : BALUN	Per 2 digits of Length, Width, Thickness: e.g.: 201209= Length 20, Width 12, Thickness 09	0 : 0.1 mm 1 : 1.0 mm	B: GSM850/ GSM900/ DCS1800/ PCS1900 quad band S: GSM900/ DCS1800/ PCS1900 triple band	Design Code

Minimum Ordering Quantity: 2000 pcs per reel.

PACKAGING



Plastic Tape specifications (unit :mm)

	I				
Index	Ao	Во	ΦD	Т	W
Dimension (mm)	1.40 ± 0.10	2.30 ± 0.10	1.55 ± 0.10	1.10 ± 0.10	8.0 ± 0.10
Index	E	F	Po	P1	P2
Dimension (mm)	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10

Reel dimensions

Index	А	В	С
Dimension (mm)	Φ178	Φ60.0	Ф13.5

Taping Quantity:2000 pieces per 7" reel

CAUTION OF HANDLING

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects, which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- (2) Aerospace equipment
- (3) Undersea equipment
- (4) Medical equipment
- (5) Disaster prevention / crime prevention equipment
- (6) Traffic signal equipment
- (7) Transportation equipment (vehicles, trains, ships, etc.)
- (8) Applications of similar complexity and /or reliability requirements to the applications listed in the above.

Storage condition

- (1) Products should be used in 6 months from the day of WALSIN outgoing inspection, which can be confirmed.
- (2) Storage environment condition.
 - Products should be storage in the warehouse on the following conditions.

Temperature : -10 to +40 $^{\circ}$ C

Humidity : 30 to 70% relative humidity

- Don't keep products in corrosive gases such as sulfur. Chlorine gas or acid or it may cause oxidization of electrode, resulting in poor solderability.
- Products should be storage on the palette for the prevention of the influence from humidity, dust and son on.
- Products should be storage in the warehouse without heat shock, vibration, direct sunlight and so on.
- Products should be storage under the airtight packaged condition.